CHAP 15 - DENOMBREMENT - PROBABILITES

1 Dénombrement

Dans ce paragraphe, on note $F_n = [1, n]$, avec $n \in \mathbb{N}^*$. p désigne un entier naturel, inférieur ou égal à n.

1.1 Ensembles finis

Définition 1

On dit qu'un ensemble E est fini, de cardinal n s'il est en bijection avec F_n .

On note Card(E) = n, ou |E| = n.

Par convention, on dira que l'ensemble vide est de cardinal 0.

Proposition 1

Si B est une partie d'un ensemble fini A, alors B est un ensemble fini, et $Card(B) \leq Card(A)$. Il y a égalité si, et seulement si A = B.

Proposition 2

Si B est une partie d'un ensemble fini A, alors

$$Card(B^C) = Card(A) - Card(B)$$

Proposition 3

Si A et B sont deux ensembles finis, alors $A \cup B$ est un ensemble fini, et

$$\operatorname{Card}(A \cup B) = \operatorname{Card}(A) + \operatorname{Card}(B) - \operatorname{Card}(A \cap B)$$

$$\operatorname{Card}(A \setminus B) = \operatorname{Card}(A) - \operatorname{Card}(A \cap B)$$

Proposition 4

Si $(A_i)_{i\in [1,n]}$ est une famille d'ensembles finis, alors $A=A_1\times A_2\times \cdots \times A_n$ est un ensemble fini, et

$$Card(A) = Card(A_1) Card(A_2) \cdots Card(A_n)$$

Proposition 5

Pour tout ensemble fini E, l'ensemble des parties de E, $\mathcal{P}(E)$, est un ensemble fini, et

$$\operatorname{Card}(\mathscr{P}(E)) = 2^{\operatorname{Card}(E)}$$

Proposition 6

Soient A et B deux ensembles finis de cardinaux n et m respectivement.

Le nombre d'applications de A dans B est m^n .

Proposition 7

Soient A et B deux ensembles finis de même cardinal, et f une application entre A et B. Les propriétés suivantes sont équivalentes :

- (i) f est bijective
- (ii) f est injective
- (iii) f est surjective

1.2 Permutation

Définition 2

On appelle **permutation** de F_n toute bijection de F_n sur F_n . On note σ_n l'ensemble des permutations de F_n .

Proposition 8

 σ_n est un ensemble fini et

$$Card(\sigma_n) = n!$$

1.3 Arrangement

Définition 3

On appelle arrangement de p éléments d'un ensemble E de cardinal n tout p-uplet (x_1, x_2, \dots, x_p) d'éléments distincts de E. Le nombre d'arrangements de p éléments de E se note A_n^p .

Exemple 1

(2,1,4) et (1,2,4) sont deux arrangements de 3 éléments de F_4 .

Remarque 1

(a) La donnée d'un arrangement de p éléments d'un ensemble de cardinal n revient à la donnée d'une application injective de F_p dans F_n .

Plus précisément, il y a une bijection entre les applications injectives de F_p dans F_n et l'ensemble des arrangements de p éléments d'un ensemble de cardinal n.

(b)
$$A_n^1 = n \text{ et } A_n^n = n!$$

Proposition 9

$$\mathbf{A}_n^p = \frac{n!}{(n-p)!}$$

1.4 Combinaison

Définition 4

On appelle combinaison de p éléments d'un ensemble E de cardinal n toute partie de p éléments distincts de E.

Proposition 10

Le nombre de combinaisons de p éléments d'un ensemble de cardinal n est

$$\binom{n}{p} = \frac{n!}{p!(n-p)!}$$

Remarque 2

$$\binom{n}{0} = \binom{n}{n} = 1$$

Proposition 11

$$\bullet \ \binom{n}{p} = \binom{n}{n-p}$$

• Formule de Pascal :
$$\binom{n}{p} = \binom{n-1}{p} + \binom{n-1}{p-1}$$

2 Probabilité sur un ensemble fini

2.1 Vocabulaire des événements

Définition 5

L'ensemble de toutes les issues possibles, ou **éventualités**, d'une **expérience aléatoire** (soumise au hasard) est appelé **ensemble fondamental**, ou **univers**, que l'on notera par la suite Ω .

Définition 6

- Un événement est un sous-ensemble de l'univers Ω .
- Un événement élémentaire, ou singleton, est un événement ne contenant qu'une seule éventualité.
- Ø est dit événement impossible.
- L'univers Ω est dit événement certain.

Définition 7

Etant donné un événement E dans un univers Ω , la négation de l'événement E, ou **événement** contraire de E, noté \overline{E} , est l'événement qui se réalise quand E ne se réalise pas, et qui ne se réalise pas quand E se réalise.

Il est composé des éventualités de Ω qui ne sont pas dans E: c'est le complémentaire dans Ω de E.

Définition 8

Soient E_1 et E_2 deux événements de Ω .

- L'événement " E_1 et E_2 ", noté $E_1 \cap E_2$ est constitué des éventualités qui appartiennent à la fois à E_1 et à E_2 .
- Si $E_1 \cap E_2 = \emptyset$, on dit que E_1 et E_2 sont **incompatibles.**
- L'événement " E_1 ou E_2 ", noté $E_1 \cup E_2$ est constitué de toutes les éventualités de E_1 et de toutes celles de E_2 .

2.2 Espace probabilisé

Définition 9

On appelle **probabilité** sur un ensemble fini Ω toute application \mathbb{P} de $\mathscr{P}(\Omega)$ dans [0,1] vérifiant :

- $\bigstar \mathbb{P}(\Omega) = 1$
- $\star \forall (A,B) \in (\mathscr{P}(\Omega))^2, \quad A \cap B = \varnothing \Longrightarrow \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$

Le couple (Ω, \mathbb{P}) est appelé **espace probabilisé**.

On se place désormais dans un espace probabilisé (Ω, \mathbb{P}) , où Ω est un univers fini.

Définition 10

On appelle distribution de probabilités sur un ensemble E une famille de réels positifs, indexée sur E et de somme 1.

Remarque 3

Une probabilité \mathbb{P} est entièrement déterminée sur $\Omega = \{\omega_1, \dots, \omega_n\}$ par la distribution de probabilités $(\mathbb{P}(\omega_i))_{1 \le i \le n}$.

Proposition 12

- $\bullet \ \mathbb{P}(\varnothing) = 0.$
- Soit E un événement de Ω . Alors on a : $0 \leq \mathbb{P}(E) \leq 1$ et $\mathbb{P}(\overline{E}) = 1 \mathbb{P}(E)$.
- Soit $(E_i)_{i\in [1,n]}$ une famille d'événements de Ω deux à deux incompatibles. Alors

$$\mathbb{P}\left(\bigcup_{i=1}^{n} E_i\right) = \sum_{i=1}^{n} \mathbb{P}(E_i)$$

• Soient E_1 et E_2 deux événements de Ω . Alors

$$\mathbb{P}(E_1 \cup E_2) = \mathbb{P}(E_1) + \mathbb{P}(E_2) - \mathbb{P}(E_1 \cap E_2)$$

• Soient E_1 et E_2 deux événements de Ω . Si $E_1 \subset E_2$ alors $\mathbb{P}(E_1) \leq \mathbb{P}(E_2)$.

Définition 11

Lors d'une expérience aléatoire sur un univers Ω , lorsque chaque éventualité a la même probabilité de se réaliser, on dit qu'il y a **équiprobabilité** sur l'univers.

Proposition 13

Lorsqu'il y a équiprobabilité sur un univers Ω , pour tout événement E on a :

$$\mathbb{P}(E) = \frac{\operatorname{Card}(E)}{\operatorname{Card}(\Omega)}$$

En particulier, $\forall i \in [1, n], \mathbb{P}(\omega_i) = \frac{1}{\operatorname{Card}(\Omega)}$.

2.3 Conditionnement et indépendance

Définition 12

Soient A et B des événements tels que $\mathbb{P}(B) \neq 0$.

La probabilité que l'événement A se réalise sachant que l'événement B est réalisé est définie par

$$\mathbb{P}(A|B) = \mathbb{P}_B(A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

et se lit probabilité de A sachant B.

Par convention, $\mathbb{P}(A|B) \mathbb{P}(B) = 0$ si $\mathbb{P}(B) = 0$.

Proposition 14

L'application \mathbb{P}_B définit une probabilité sur Ω ; elle vérifie notamment pour tout événement $A: 0 \leq \mathbb{P}_B(A) \leq 1$ et $\mathbb{P}_B(A) + \mathbb{P}_B(\overline{A}) = 1$.

Remarque 4

Le "conditionnement" revient à changer d'univers : on se place dans l'univers B.

Proposition 15 Formule des probabilités composées

Soient E_1, E_2, \dots, E_n des événements tels que $\mathbb{P}\left(\bigcap_{i=1}^{n-1} E_i\right) \neq 0$, alors on a :

$$\mathbb{P}\left(\bigcap_{i=1}^{n} E_{i}\right) = \mathbb{P}(E_{1}) \,\mathbb{P}\left(E_{2}|E_{1}\right) \,\mathbb{P}\left(E_{3}|E_{1} \cap E_{2}\right) \cdots \,\mathbb{P}\left(E_{n}\left|\bigcap_{i=1}^{n-1} E_{i}\right.\right)$$

Définition 13

On dit que deux événements A et B sont **indépendants** si $\mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(B)$.

Remarque 5

En pratique, on peut se trouver dans deux situations :

- (a) Soit on connait la loi de probabilité et on cherche à savoir si deux événements sont indépendants, on doit alors vérifier par le calcul si l'égalité $\mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(B)$ est vérifiée;
- (b) Soit on sait que les événements sont indépendants et on utilise l'égalité $\mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(B)$ dans les calculs pour déterminer d'autres probabilités.

Remarque 6

Si A et B sont deux événements indépendants de probabilités non nulles, alors $\mathbb{P}_B(A) = \mathbb{P}(A)$ et $\mathbb{P}_A(B) = \mathbb{P}(B)$.

Proposition 16

Si A et B sont deux événements indépendants, alors A et \overline{B} le sont également.

Définition 14

On dit que les événements E_1, \dots, E_n sont (mutuellement) indépendants si

$$\forall I \in \mathscr{P}([1, n]), \quad \mathbb{P}\left(\bigcap_{i \in I} E_i\right) = \prod_{i \in I} \mathbb{P}(E_i)$$

Attention! L'indépendance des E_i deux par deux n'implique pas l'indépendance mutuelle.

Définition 15

On considère une expérience aléatoire constituée de l'enchaînement de n expériences aléatoires. Si chacune se déroule dans des conditions qui ne dépendant pas du résultat des autres, on dit que ces expériences sont **indépendantes**.

La probabilité d'un résultat final est alors obtenue par le produit des probabilités de chacun des n résultats intermédiaires.

Définition 16

Une **partition de l'univers** Ω est un ensemble d'événements non vides, deux à deux incompatibles, dont l'union est Ω .

Théorème 1 Formule des probabilités totales

Si $(E_i)_{i \in [\![1,n]\![}$ est une partition de l'univers telle que $\forall i \in [\![1,n]\![$, $\mathbb{P}(E_i) \neq 0$ alors pour tout événement A, on a :

$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}_{E_i}(A) \, \mathbb{P}(E_i)$$

Remarque 7

En particulier, si $\mathbb{P}(B) \neq 0$, $\mathbb{P}(A) = \mathbb{P}_B(A)\mathbb{P}(B) + \mathbb{P}_{\overline{B}}(A)\mathbb{P}(\overline{B})$.

Théorème 2 Formule de Bayes

Si $(E_i)_{i \in [\![1,n]\![\!]}$ est une partition de l'univers telle que $\forall i \in [\![1,n]\![\!], \mathbb{P}(E_i) \neq 0$ alors pour tout événement A de probabilité non nulle, on a :

$$\forall j \in [1, n], \quad \mathbb{P}_A(E_j) = \frac{\mathbb{P}_{E_j}(A) \, \mathbb{P}(E_j)}{\sum_{i=1}^n \mathbb{P}_{E_i}(A) \, \mathbb{P}(E_i)}$$

3 Variables aléatoires

3.1 Généralités

Définition 17

Dans l'étude d'une expérience aléatoire, une **variable aléatoire** est une application définie sur l'univers Ω à valeurs dans un ensemble E.

Lorsque $E = \mathbb{R}$, la variable aléatoire est dite **réelle**.

Notations: Etant donnée une variable aléatoire X à valeurs dans un ensemble E, on notera:

$$\forall A \in \mathscr{P}(E), \quad \mathbb{P}(X \in A) = \mathbb{P}(X^{-1}(A)) = \mathbb{P}(\{\omega \in \Omega, X(\omega) \in A\})$$

Définition 18

Soit X une variable aléatoire à valeurs dans un ensemble E. La **loi de probabilité de X**, notée P_X , est déterminée par la distribution de probabilités $(\mathbb{P}(X=x))_{x\in E}$. Si $A \in \mathscr{P}(E)$, on note $P_X(A) = \mathbb{P}(X \in A)$.

Remarque 8

L'univers Ω étant fini, une variable aléatoire définie sur Ω prend un nombre fini de valeurs : $X(\Omega) = \{x_1, \dots, x_n\}$. Ainsi, pour déterminer P_X , il faut exprimer $\mathbb{P}(X = x_i)$ pour tout $i \in [1, n]$. On les représente souvent dans un tableau.

Proposition 17

Soient X une variable aléatoire réelle et f une application définie sur $X(\Omega)$. Alors Y = f(X) est une variable aléatoire, et si $F = f(X(\Omega))$, pour toute partie B de F, on a : $P_Y(B) = P_X(f^{-1}(B))$

Définition 19

Soient X une variable aléatoire réelle, et A un événement de Ω de probabilité non nulle. On définit la loi conditionnelle de X sachant A par :

$$\forall B \in \mathscr{P}(X(\Omega)), \quad P_{X|A}(B) = \mathbb{P}_A(X \in B) = \frac{\mathbb{P}((X \in B) \cap A)}{\mathbb{P}(A)}$$

3.2 Lois usuelles

3.2.1 Loi uniforme discrète

Définition 20

Soit X une variable aléatoire prenant les valeurs x_1, \dots, x_n . X suit une loi uniforme discrète, ou loi équirépartie, si

$$\forall i \in [1, n], \quad \mathbb{P}(X = x_i) = \frac{1}{n}$$

On note $X \sim \mathcal{U}(x_1, \dots, x_n)$.

3.2.2 Loi de Bernoulli

Définition 21

Une variable aléatoire X suit une loi de Bernoulli de paramètre p (avec $p \in [0,1]$) si

$$X(\Omega) = \{0, 1\}, \quad \mathbb{P}(X = 1) = p \quad \text{et} \quad \mathbb{P}(X = 0) = 1 - p$$

On note $X \sim \mathcal{B}(p)$.

Remarque 9

Cette loi modélise toute expérience aléatoire ayant exactement deux issues arbitrairement appelées "succès" (pour X = 1) et "échec" (pour X = 0), avec respectivement les probabilités p et 1-p. Une telle expérience est appelée **expérience de Bernoulli de paramètre** p.

3.2.3 Loi binomiale

Définition 22

Une variable aléatoire X suit une loi binomiale de paramètres $n \in \mathbb{N}^*$ et $p \in [0, 1]$ si

$$X(\Omega) = [0, n], \quad \forall k \in [0, n], \quad \mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$$

On note $X \sim \mathcal{B}(n, p)$.

Remarque 10

Cette loi modélise toute expérience aléatoire consistant à répéter n fois une expérience de Bernoulli de paramètre p, dans des conditions identiques et indépendantes, la variable aléatoire X comptant le nombre de succès au cours des n expériences.

3.3 Couple de variables aléatoires

Définition 23

Soient X et Y deux variables aléatoires définies sur Ω , prenant les valeurs x_1, \dots, x_n et y_1, \dots, y_m respectivement.

Déterminer la loi du couple (X, Y), ou loi conjointe du couple, c'est trouver les nombres $\mathbb{P}(X = x_i, Y = y_i) = \mathbb{P}((X = x_i) \cap (Y = y_i))$ pour tous les couples $(i, j) \in [1, n] \times [1, m]$. Les lois de X et Y sont appelées lois marginales du couple (X, Y).

Y	x_1	x_2		$\chi_{\rm n}$	Loi de Y	
<i>y</i> 1	$P((X; Y) = (x_1; y_1))$	$\mathbb{P}((X; Y) = (x_2; y_1))$		$\mathbb{P}((X; Y) = (x_n; y_1))$	$\mathbb{P}(Y=y_1)$	
<i>y</i> ₂	$\mathbb{P}((X;Y)=(x_1;y_2))$	$\mathbb{P}((X; Y) = (x_2; y_2))$		$\mathbb{P}((X;Y)=(x_n;y_2))$	$\mathbb{P}(Y=y_2) \blacktriangleleft$	
	•••	•••				
y _m	$\mathbb{P}((X; Y) = (x_1; y_m))$	$\mathbb{P}((X;Y)=(x_2;y_m))$		$\mathbb{P}((X; Y) = (x_n; y_m))$	$P(Y=y_m)$	
Loi de X	$\mathbb{P}\left(X=x_1\right)$	$\mathbb{P}(X=x_2)$		$\mathbb{P}\left(X=x_{n}\right)$	1	
Somme des valeurs de la colonne correspondante				Somme des valeurs de la ligne correspondante		

Attention! La connaissance de la loi conjointe donne les lois marginales, mais la connaissance des lois marginales ne donne pas la loi conjointe.

Définition 24

Soient X et Y deux variables aléatoires et $x \in X(\Omega)$ tel que $\mathbb{P}(X = x) > 0$.

On appelle **loi conditionnelle de**
$$Y$$
 sachant $(X = x)$ la probabilité définie sur $Y(\Omega)$ par : $\forall A \in \mathscr{P}(Y(\Omega)), \mathbb{P}_{X=x}(Y \in A) = \frac{\mathbb{P}((Y \in A) \cap (X = x))}{\mathbb{P}(X = x)}.$

Remarque 11

Si on connait la loi de X et les lois conditionnelles de Y sachant (X = x) pour tout $x \in X(\Omega)$ tel que $\mathbb{P}(X=x)>0$, alors on connait la loi conjointe de X et Y.

3.4Variables aléatoires indépendantes

Définition 25

Deux variables aléatoires X et Y sont dites indépendantes si pour tout $A \in \mathcal{P}(X(\Omega))$ et tout $B \in \mathscr{P}(Y(\Omega))$, les événements $(X \in A)$ et $(Y \in B)$ sont indépendants.

Définition 26

Les variables aléatoires $X1, \dots, X_n$ sont dites (mutuellement) indépendantes si pour tout

$$(A_1, \cdots, A_n) \in \prod_{i=1}^n \mathscr{P}(X_i(\Omega))$$
, les événements $(X_i \in A_i)$ sont mutuellement indépendants.

Proposition 18

Si X_1, \dots, X_n sont n variables aléatoires indépendantes suivant une loi $\mathcal{B}(p)$, alors la variable aléatoire $X = X_1 + \cdots + X_n$ suit une loi $\mathcal{B}(n, p)$.

Théorème 3

Si X et Y sont deux variables aléatoires indépendantes, et si f et g sont des applications définies respectivement sur $X(\Omega)$ et $Y(\Omega)$ alors f(X) et g(Y) sont des variables aléatoires indépendantes.

Proposition 19 Lemme des coalitions

Si les variables aléatoires réelles $X_1, \dots X_n$ sont indépendantes, et si f et g sont des applications définies respectivement sur \mathbb{R}^p et \mathbb{R}^{n-p} , $p \in [1, n-1]$, alors les variables aléatoires $f(X_1, \dots, X_p)$ et $g(X_{p+1}, \dots, X_n)$ sont indépendantes.

Remarque 12

Cette propriété s'étend au cas de plus de deux coalitions.

3.5 Caractéristiques d'une variable aléatoire discrète

3.5.1 Espérance mathématique

Définition 27

Soit X une variable aléatoire réelle sur un univers fini Ω , telle que $X(\Omega) = \{x_1, \dots, x_n\}$. On définit l'espérance mathématique de X par :

$$\mathbb{E}(X) = \sum_{\omega \in \Omega} \mathbb{P}(\omega)X(\omega) = \sum_{i=1}^{n} x_i \, \mathbb{P}(X = x_i)$$

Proposition 20

Soient X et Y deux variables aléatoires réelles, a et b des réels.

- $\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$
- Si $X \leq Y$ (c'est-à-dire, $\forall \omega \in \Omega, X(\omega) \leq Y(\omega)$), alors $\mathbb{E}(X) \leq \mathbb{E}(Y)$
- Si X et Y sont deux variables aléatoires indépendantes, alors $\mathbb{E}(XY) = \mathbb{E}(X) \mathbb{E}(Y)$. **Attention!** La réciproque est fausse.

Proposition 21

Soit X une variable aléatoire.

- Si X est constante égale à a, alors $\mathbb{E}(X) = a$.
- Si $X = 1_A$, où A est un événement non vide, alors $\mathbb{E}(X) = \mathbb{P}(A)$.
- Si $X \sim \mathcal{B}(p)$, alors $\mathbb{E}(X) = p$.
- Si $X \sim \mathcal{B}(n, p)$, alors $\mathbb{E}(X) = np$.

Théorème 4 Théorème de transfert

Soient X une variable aléatoire réelle et f une application à valeurs réelles définie sur $X(\Omega) = \{x_1, \dots, x_n\}$. Alors

$$\mathbb{E}(f(X)) = \sum_{i=1}^{n} f(x_i) \, \mathbb{P}(X = x_i)$$

3.5.2 Variance, écart type et covariance

Définition 28

Soit X une variable aléatoire réelle prenant un nombre fini de valeurs x_1, \dots, x_n . On appelle **variance de** X le réel

$$\operatorname{Var}(X) = \mathbb{E}\left((X - \mathbb{E}(X))^2\right) = \sum_{i=1}^n \left(x_i - \mathbb{E}(X)\right)^2 \mathbb{P}(X = x_i)$$

On appelle écart type de X le nombre

$$\sigma(X) = \sqrt{\operatorname{Var}(X)}$$

Proposition 22 Formule de König - Huygens

$$Var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$

Proposition 23

Soient X et Y deux variables aléatoires réelles, a et b des réels.

- $Var(aX + b) = a^2 Var(X)$.
- Si X et Y sont deux variables aléatoires indépendantes, Var(X + Y) = Var(X) + Var(Y).

Proposition 24

Soit X une variable aléatoire réelle.

- Si $X \sim \mathcal{B}(p)$ alors Var(X) = p(1-p).
- si $X \sim \mathcal{B}(n, p)$, alors Var(X) = np(1 p).

Définition 29

Soient X et Y deux variables aléatoires réelles. On appelle covariance du couple (X,Y) le nombre :

$$cov(X, Y) = \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y)))$$

Deux variables aléatoires dont la covariance est nulle sont dites décorrélées.

Proposition 25

Soient X et Y deux variables aléatoires réelles. On a :

$$\operatorname{cov}(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X) \, \mathbb{E}(Y)$$

Proposition 26

Soient X et Y deux variables aléatoires réelles. Si X et Y sont indépendantes, alors elles sont décorrélées.

3.5.3 Inégalités probabilistes

Proposition 27 Inégalité de Markov

Si X est une variable aléatoire réelle **positive** alors pour tout réel a > 0, on a :

$$\mathbb{P}(X \ge a) \le \frac{\mathbb{E}(X)}{a}$$

Proposition 28 Inégalité de Bienaymé-Tchebychev

Soit X une variable aléatoire réelle. Pour tout réel a > 0, on a :

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge a) \le \frac{\operatorname{Var}(X)}{a^2}$$