Feuille 7 : Continuité - Dérivabilité

I EXERCICES TECHNIQUES

Exercice 1

Etudier la limite en $a \in \overline{\mathbb{R}}$ des fonctions f suivantes (on distinguera éventuellement limite à droite et limite à gauche):

a.
$$f(x) = \frac{x^2 + x - 2}{x - 1}$$
, $a = 1$ Factoriser.

b.
$$f(x) = \frac{x-1}{x^3-1}$$
, $a = 1$ Factoriser.

c.
$$f(x) = \frac{\sqrt{x+1}-2}{x-3}$$
, $a=3$ Utiliser l'expression conjuguée.

$$\mathbf{c.} \quad f(x) = \frac{\sqrt{x+1}-2}{x-3}, \qquad a=3 \qquad \text{Utiliser l'expression conjuguée.}$$

$$\mathbf{d.} \quad f(x) = \frac{x^2+|x|}{x^2-|x|}, \qquad a \in \{1,0,-1,+\infty,-\infty\} \qquad \text{Factoriser.}$$

e.
$$f(x) = x^2(1 + \sin x)$$
, $a = +\infty$ Utiliser la caractérisation séquentielle de la limite.

$$\mathbf{e.} \quad f(x) = x^2(1+\sin\,x), \qquad a = +\infty \qquad \text{Utiliser la caractérisation séquentielle de la limite.}$$

$$\mathbf{f.} \quad f(x) = \frac{\sqrt{x+2}-2}{\sqrt{x^2+x+3}-\sqrt{2x+5}}, \qquad a \in \{2,+\infty\} \quad \text{Utiliser les expressions conjuguées et factoriser.}$$

g.
$$f(x) = \frac{\sin x}{\sqrt{1 - \cos x}}$$
, $a = 0$ Utiliser les formules de trigonométrie pour simplifier la fraction.

h.
$$f(x) = \frac{\sin(3x)}{1 - 2\cos(x)}$$
, $a = \frac{\pi}{3}$ Utiliser les formules de trigonométrie pour simplifier la fraction.

Calculer les dérivées n-ème des fonctions suivantes $(n \in \mathbb{N}^*)$:

a.
$$f(x) = \sin^2 x$$
 Linéariser

b.
$$f(x) = x^2(1+x)^n$$
 Utiliser la formule de Leibniz

c.
$$f(x) = \frac{1}{1-x}$$
 Intuiter la formule et la montrer par récurrence.

d.
$$f(x) = \frac{1}{1+x}$$
 Se déduit de la précédente.

e.
$$f(x) = \frac{1}{1 - x^2}$$
 Se ramener aux précédentes.

II EXERCICES SUR LA CONTINUITE

Exercice 3

Montrer à l'aide de la définition que la fonction inverse est continue sur \mathbb{R}^* . Raisonner par analyse synthèse.

Exercice 4

Etudier la continuité en 0 de la fonction f définie sur \mathbb{R} par :

$$f(x) = \begin{cases} x - \frac{|x|}{x} & \text{si } x \neq 0 \\ -1 & \text{si } x = 0 \end{cases}$$

Montrer la discontinuité en 0⁻

Exercice 5

On considère la fonction f définie sur \mathbb{R} par

$$f(x) = |x| + (x - |x|)^2$$

Déterminer l'ensemble sur lequel f est continue.

Pour $a \in \mathbb{Z}$ et $x \in \mathbb{R}$, écrire x = a + (x - a) et faire la disjonction de cas $0 \le x - a < 1$ et -1 < x - a < 0.

Exercice 6

Montrer que l'équation $x^5 = x^3 + 1$ admet au moins une solution strictement positive. Utiliser le TVI.

III EXERCICES SUR LES LIMITES

Exercice 7

Pour un réel m fixé, on considère la fonction f_m définie par

$$f_m(x) = \sqrt{x^2 + 2x - 3} + mx$$

- a. Justifier que f est définie aux voisinages de $+\infty$ et $-\infty$.
- Montrer que la courbe de f_m admet des asymptotes en $\pm \infty$, et les déterminer en fonction de m.

On rappelle qu'une droite d'équation y = ax + b est asymptote en $+\infty$ (resp. $-\infty$) à la courbe représentative d'une fonction f si $\lim_{x \to +\infty} (f(x) - ax - b) = 0$ (resp. $\lim_{x \to -\infty} (f(x) - ax - b) = 0$)

Pour
$$x \neq 0$$
, écrire $f_m(x) = |x| \sqrt{1 + \frac{2}{x}} + mx$.

Pour $x \neq 0$, écrire $f_m(x) = |x| \sqrt{1 + \frac{2}{x} + mx}$. Faire la disjonction de cas m = -1 et $m \neq -1$ en $+\infty$, et m = 1 et $m \neq 1$ en $-\infty$.

Pour déterminer a, étudier $\lim \frac{f(x)}{x}$, puis pour déterminer b étudier $\lim (f(x) - ax)$.

Exercice 8

Soit $m \in \mathbb{R}$. On considère la fonction f définie sur $\mathbb{R} \setminus \left\{\frac{1}{2}\right\}$ par

$$f(x) = \frac{(m+1)x^2 + 3x}{2x - 1}$$

Etudier les limites de f aux bornes de son domaine, en discutant suivant les valeurs du paramètre m.

En
$$\frac{1}{2}$$
, écrire $f(x) = \frac{x((m+1)x+3)}{2x-1}$, et faire une disjonction de cas.
En $\pm \infty$, écrire $f(x) = \frac{(m+1)x+3}{2-\frac{1}{x}}$, et faire une disjonction de cas.

Exercice 9

Soit f une fonction de $\mathbb{R}^{\mathbb{R}}$ admettant une période et une limite finie en $+\infty$.

Montrer que f est constante.

Faire un raisonnement par l'absurde.

Exercice 10

Déterminer les limites suivantes :

a.
$$\lim_{x\to 0} \frac{\sqrt{x+1}-1}{\sqrt{x}}$$
 multiplier par l'expression conjuguée.

b.
$$\lim_{x \to \frac{\pi}{4}} \frac{\tan x - 1}{x - \frac{\pi}{4}}$$
 taux d'accroissement.

c.
$$\lim_{x\to 0} \frac{e^x - 1}{\ln(1-x)}$$
 quotient de deux taux d'accroissement.

d.
$$\lim_{x\to 0} \frac{\sqrt[3]{1+x} - \sqrt[3]{1-x}}{x}$$
 taux d'accroissement.
e. $\lim_{x\to \frac{\pi}{4}} \frac{\sin x - \cos x}{x - \frac{\pi}{4}}$ taux d'accroissement

e.
$$\lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{x - \frac{\pi}{4}}$$
 taux d'accroissement

IV EXERCICES SUR LA DERIVATION

Exercice 11

Etudier la dérivabilité en 0 de la fonction :

$$f: x \mapsto \operatorname{Arcsin}(1-x^3)$$

Utiliser le théorème de prolongement de la dérivée.

Exercice 12

Soient f et g des fonctions dérivables sur un intervalle I et $a \in I$. On suppose que f(a) = g(a) = 0. Montrer que si $g'(a) \neq 0$, alors

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$$

(Cette propriété s'appelle règle de l'Hôpital)

Faire apparaître des taux d'accroissement.

Exercice 13

Soit $n \in \mathbb{N}^*$. Montrer que la dérivée n-ème de la fonction f définie sur \mathbb{R} par

$$f(x) = \frac{1}{1+x^2}$$

est de la forme :

$$f^{(n)}(x) = \frac{P_n(x)}{(1+x^2)^{n+1}}$$

où P_n est une fonction polynomiale.

Par récurrence.

Exercice 14

Soit $n \in \mathbb{N}^*$. Calculer la dérivée n-ème de la fonction f dans les cas suivants :

a.
$$f(x) = \cos(3x)$$

b.
$$f(x) = \cos^3 x$$
 Linéariser.

c. $f(x) = \ln(x)$ Intuiter la formule et la montrer par récurrence.

d.
$$f(x) = x^{n-1} \ln(x)$$
 Utiliser la formule de Leibniz.

e.
$$f(x) = \cos(x) e^x$$
 Ecrire $f(x) = \operatorname{Re}\left(e^{(1+i)x}\right)$.

Exercice 15

Montrer que la fonction f suivante est de classe C^{∞} sur \mathbb{R} :

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{si } x \neq 0\\ 0 & \text{si } x = 0 \end{cases}$$

Par récurrence.

Exercice 16

a. En utilisant le TAF, montrer que

$$\forall x \in \left[0, \frac{\pi}{2}\right], \quad \sin x \le x$$

b. En déduire que :

$$\forall x \in \left[0, \frac{\pi}{2}\right], \quad x \cos x \le \frac{\pi^2}{16}$$

Poser
$$t = \frac{\pi}{2} - x$$
.

Exercice 17

a. En utilisant le TAF, montrer que

$$\forall k \in \mathbb{N}^*, \quad \frac{1}{k+1} \le \ln\left(1 + \frac{1}{k}\right) \le \frac{1}{k}$$

Appliquer le TAF à la fonction $\ln \sup [k, k+1]$.

b. En déduire un encadrement indépendant de n de

$$S_n = \sum_{k=1}^n \frac{1}{k} - \ln(n)$$

Sommer les inégalités précédentes.

c. Montrer que la suite (S_n) converge. Montrer que (S_n) est décroissante.

Exercice 18

Déterminer l'ensemble des solutions des équations différentielles suivantes en précisant le domaine sur lequel elles sont définies, et déterminer s'il en existe qui sont définies sur \mathbb{R} :

a.
$$x^3y' = y$$

b.
$$x^2y' + y = 1$$

LES BONS REFLEXES

- ♣ DERIVABLE \Rightarrow CONTINUE (et pas le contraire!!!!).
- \maltese Pour calculer une dérivée n-ème, on transforme la fonction pour se ramener à une fonction usuelle, ou on utilise la formule de Leibniz.
- \maltese Pour lever une indéterminée de la forme $\frac{0}{0}$ en un réel, on peut se ramener à un taux d'accroissement.
- \maltese Pour lever une indéterminée de la forme $\frac{\infty}{\infty}$, on peut factoriser.
- ₹ Pour montrer une inégalité, on peut utiliser l'IAF.