Exos ANO - Révisions

Exercice 1

Etablir la convergence, et donner la limite des suites suivantes :

a)
$$u_0 = 2$$
, et $\forall n \in \mathbb{N}, u_{n+1} = \frac{u_n^2 + 1}{2u_n}$; **b)** $v_0 \in \mathbb{R}_+^*$, et $\forall n \in \mathbb{N}, v_{n+1} = \frac{v_n^3 + 3\lambda v_n}{3v_n^2 + \lambda}$, où $\lambda > 0$.

Exercice 2

Donner la forme explicite des suites suivantes :

a)
$$\begin{cases} u_0 = u_1 = 1 \\ u_{n+2} = u_{n+1} + 6u_n, \ \forall n \in \mathbb{N} \end{cases}$$
; b)
$$\begin{cases} v_0 = 1, v_1 = 1 + \sqrt{2} \\ v_{n+2} = 2v_{n+1} - 2v_n, \ \forall n \in \mathbb{N} \end{cases}$$
; c)
$$\begin{cases} w_0 = 0, w_1 = 1 \\ w_{n+2} = \frac{-1}{4}w_n + w_{n+1}, \ \forall n \in \mathbb{N} \end{cases}$$

Exercice 3

Soit (u_n) une suite de réels strictement positifs tels que $\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=L<1$.

Montrer que (u_n) converge vers 0.

Exercice 4

Soit A une partie non vide de \mathbb{R} .

- 1. Montrer l'équivalence entre les deux assertions suivantes :
 - (i) Entre deux réels distincts, il existe au moins un élément de A.
 - (ii) Tout réel est limite d'une suite d'éléments de A

Remarque : Si ces propriétés sont vérifiées, on dit que A est dense dans \mathbb{R} .

2. Montrer que si A est majorée, il existe une suite (a_n) d'éléments de A telle que $\lim_{n \to +\infty} a_n = \sup A$.

Exercice 5

Résoudre les équations différentielles suivantes :

1.
$$(x+1)y' - 2y = e^x(x+1)^3$$
, sur $]-1; +\infty[$.

2.
$$(1 + \cos^2 x)y' - \sin(2x) y = \cos x$$
, sur \mathbb{R} .

3.
$$y'' + 6y' + 9y = (x+1)e^{-3x}$$
.

4.
$$y'' + 4y' + 13y = e^{-2x}$$
.

Exercice 6

Calculer pour x > 0 les intégrales suivantes :

a)
$$I(x) = \int_0^x t \left(\text{Artcan}(t) \right)^2 dt;$$
 b) $J(x) = \int_1^x \frac{\sqrt{t}}{1+t} dt;$ **c)** $K(x) = \int_0^x \frac{e^t - e^{-t}}{e^t + 1} dt.$

Exercice 7

Soient f et g deux fonctions continues sur \mathbb{R} telles que :

$$\forall x \in \mathbb{R}, f(x) = \int_0^x g(t) dt$$
, et $g(x) = \int_0^x f(t) dt$.

Montrer que f et g sont nulles sur \mathbb{R} .

Exercice 8

- 1. Donner le développement limité à l'ordre 3 au voisinage de 0 de $f: x \mapsto \exp\left(\frac{\ln(1+2x)}{1+x}\right)$.
- **2.** Donner le développement limité à l'ordre 4 au voisinage de 0 de $g: x \mapsto (1+x)^x$.

Exercice 9

On considère la fonction f définie sur $\mathbb{R}_+^* - \{1\}$ par :

$$f(x) = \frac{2x \ln(x)}{x - 1}$$

- 1. Montrer que f se prolonge par continuité en 1. On note encore f la fonction prolongée, et \mathscr{C}_f sa courbe dans le plan muni d'un repère.
- **2.** Montrer que f est dérivable sur \mathbb{R}_+^* , et calculer sa dérivée.
- 3. Calculer les limites de f aux bornes de son domaine, puis dresser son tableau de variations.
- 4. Etudier la position \mathcal{C}_f par rapport à sa tangente au point d'abscisse 1.
- **5.** Tracer \mathscr{C}_f .

Exercice 10

Déterminer la nature de la série $\sum_{n\geq 1} \left(\left(1 + \frac{1}{n^2}\right)^n - 1 \right)$.

Exercice 11

Montrer que la série $\sum_{n\geq 2} \frac{1-2n}{n^2(1-n)^2}$ converge, et calculer sa somme.

Exercice 12

Pour $n \in \mathbb{N}$, on définit :

$$I_n = \int_0^1 \frac{x^{2n}}{1+x^2} dx$$
, et $u_n = \frac{(-1)^n}{2n+1}$

1. Montrer que :

$$\forall n \in \mathbb{N}, 0 \le I_n \le \frac{1}{2n+1}, \quad \text{et} \quad I_n + I_{n+1} = \frac{1}{2n+1}.$$

2. En déduire que

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} u_k = \frac{\pi}{4} + (-1)^n I_{n+1}.$$

3. Montrer que la série de terme général u_n converge, et déterminer sa somme.

Exercice 13

- 1. Montrer que pour tout $x \in [0; 1[$, la série de terme général $u_n(x) = \frac{x^n}{n}$ converge.
- **2.** Justifier que $\forall (n,x) \in \mathbb{N}^* \times [0;1[,\ln(1+x) = \sum_{k=1}^n \frac{(-1)^{k+1}x^k}{k} + (-1)^n \int_0^x \frac{(x-t)^n}{(1+t)^{n+1}} dt.$
- 3. Etablir la somme de la série $\sum u_n(x)$, pour tout $x \in [0; 1[$.