Devoir maison 1 - Algèbre linéaire

On considère un \mathbb{K} -espace vectoriel noté E, et on note $\mathcal{S}(E)=\{u\in\mathcal{L}(E)/u^3=u^2\}.$

1. Soit l'endomorphisme f de \mathbb{R}^3 défini par :

$$\forall (x, y, z) \in \mathbb{R}^3, \ f(x, y, z) = (0, x, z)$$

- **a.** Montrer que $f \in \mathcal{S}(\mathbb{R}^3)$.
- **b.** Déterminer Ker(f) et Im(f).
- **2.** On considère maintenant un endomorphisme u de $\mathcal{S}(E)$.
 - **a.** Montrer que u est inversible si, et seulement si $u = \mathrm{Id}_E$.
 - **b.** Soit $\lambda \in \mathbb{K} \{0; -1\}$. Montrer que l'endomorphisme $v = u + \lambda \mathrm{Id}_E$ est inversible.
 - **c.** Montrer que si $Ker(u) = Ker(u^2)$, alors u est un projecteur.
- **3.** On suppose dans cette question que u n'est pas injectif et que $\operatorname{Ker}(u) \neq \operatorname{Ker}(u^2)$.
 - **a.** Déterminer u^n pour $n \ge 3$.
 - **b.** En déduire que $Ker(u^2) \oplus Im(u^2) = E$.
 - **c.** Montrer que $\text{Im}(u^2)$ est stable par u, et déterminer la restriction de u à $\text{Im}(u^2)$.
 - **d.** Soit v la restriction de u à $\operatorname{Ker}(u^2)$. Montrer que v est nilpotent (c'est-à-dire : $\exists p \in \mathbb{N}/v^p = 0_{\mathcal{L}(\operatorname{Ker}(u^2))}$).