CB N°11 - SURFACES - SUJET 1

Dans tout le sujet, l'espace est rapporté à un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$.

EXERCICE 1

Soient C la courbe admettant pour paramétrage : $t\mapsto \left\{ \begin{array}{l} x=t\\ y=t^2\\ z=t^3 \end{array} \right.$, et S la surface réglée engendrée par les droites T_t tangentes à C en M(t).

- 1. Déterminer un paramétrage de S.
- 2. Déterminer les points singuliers de S et, pour les points réguliers, donner une équation cartésienne du plan tangent à S.
- 3. Vérifier que tous les points réguliers d'une même génératrice T_t ont le même plan tangent.

EXERCICE 2

Soit C la courbe d'équations : $\left\{ \begin{array}{l} x-y-1=0 \\ x^2+2z^2-y-1=0 \end{array} \right. .$

- 1. Déterminer la projection de C sur le plan (yOz), et la représenter.
- 2. Donner une équation cartésienne du cylindre Σ de directrice C dont les génératrices sont parallèles à la droite d'équations $\left\{ \begin{array}{l} x-2y-3=0 \\ x-y-z-2=0 \end{array} \right.$
- 3. Donner une équation cartésienne de la surface de révolution S engendrée par la rotation de C autour de la droite (Oy).

EXERCICE 3

Soit S la surface d'équation : $x^3 + y^3 + z^3 - 3xyz = 1$.

- 1. Donner une équation du plan tangent tangent à S en A(1,0,0).
- **2.** On pose s = x + y + z et $t = x^2 + y^2 + z^2$. Montrer que l'équation de S s'écrit : $3st s^3 = 2$.
- **3.** Soit \mathscr{B} une base orthonormée directe, dont le premier vecteur est colinéaire à $\overrightarrow{u} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$. A l'aide de la question précédente, donner une équation de S dans le repère (O, \mathscr{B}) .
- **4.** En déduire que S est une surface de révolution autour de la droite $D = (O, \overrightarrow{u})$.

Spé PT B CB11 - 2020-2021

CB N°11 - SURFACES - SUJET 2

Dans tout le sujet, l'espace est rapporté à un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$.

EXERCICE 1

Soit S la surface admettant pour paramétrage : $(u,v) \mapsto \begin{cases} x = u + v^2 \\ y = v + u^2 \\ z = uv \end{cases}$

- 1. Montrer que le point A de S de paramètres (1,1) est un point régulier, et déterminer une équation cartésienne du plan P tangent à S en A.
- 2. Montrer que la courbe Γ admettant pour paramétrage : $t\mapsto \left\{ \begin{array}{l} x=1+t^2\\ y=1+t\\ z=t \end{array} \right.$ est tracée sur S et passe par A.
- 3. Donner un paramétrage de la tangente à Γ en A, et vérifier qu'elle est dans P.

EXERCICE 2

Soit C la courbe d'équations : $\begin{cases} x-y-1=0 \\ x^2-z^2-y=0 \end{cases}.$

- 1. Déterminer la projection de C sur le plan (xOz), et la représenter.
- 2. Donner une équation cartésienne du cylindre Σ de directrice C dont les génératrices sont parallèles à la droite d'équations $\left\{ \begin{array}{l} x-2y-3=0\\ x-y-z-2=0 \end{array} \right.$
- **3.** Donner une équation cartésienne de la surface de révolution S engendrée par la rotation de C autour de la droite (Ox).

EXERCICE 3

Soit S la surface d'équation : $x^3 + y^3 - xy^2 - x^2y + 2xz^2 + 2yz^2 = 1$.

- 1. Donner une équation du plan tangent tangent à S en A(1,0,0).
- **2.** On pose s = x + y et $t = x^2 + y^2 + z^2$. Montrer que l'équation de S s'écrit : $2st s^3 = 1$.
- **3.** Soit \mathscr{B} une base orthonormée directe, dont le premier vecteur est colinéaire à $\overrightarrow{u} = \overrightarrow{i} + \overrightarrow{j}$. A l'aide de la question précédente, donner une équation de S dans le repère (O, \mathscr{B}) .
- **4.** En déduire que S est une surface de révolution autour de la droite $D = (O, \overrightarrow{u})$.

Spé PT B CB11 - 2020-2021