KHÔLLES 13 ET 14 : SUITES - CONTINUITE/DERIVABILITE

I. SUITES

- 1. Si une partie A de \mathbb{R} admet une borne supérieure, elle est unique. Si A est non vide majorée, sa borne supérieure est le plus petit des majorants.
- 2. Unicité de la limite d'une suite.

3. Théorèmes de comparaison et d'encadrement :

Soient (u_n) , (v_n) et (w_n) des suites telles que pour $n \ge n_0, u_n \le v_n \le w_n$.

- Si $\lim_{n \to +\infty} v_n = +\infty$, alors $\lim_{n \to +\infty} w_n = +\infty$. Si $\lim_{n \to +\infty} v_n = -\infty$, alors $\lim_{n \to +\infty} u_n = -\infty$.
- Si (u_n) et (w_n) admettent la même limite l alors (v_n) converge vers l.

4. Théorème de la limite monotone :

Soit (u_n) une suite croissante.

- Si (u_n) est majorée, alors elle converge vers $l = \sup\{u_n, n \in \mathbb{N}\}.$
- Si (u_n) n'est pas majorée, alors elle diverge vers $+\infty$

5. Théorème du point fixe :

Soient f une fonction définie sur un intervalle I tel que I est stable par f, et (u_n) une suite définie par son premier terme $u_0 \in I$ et par la relation de récurrence $u_{n+1} = f(u_n)$. Si (u_n) converge vers l et si f est continue en l alors f(l) = l.

II. CONTINUITÉ - DÉRIVABILITÉ

1. Théorème des valeurs intermédiaires

Si f est continue sur un intervalle I alors f(I) est un intervalle, c'est-à-dire que pour tout $(a,b) \in I^2$, tous les réels compris entre f(a) et f(b) admettent un antécédent par f.

2. Théorème de Rolle et théorème des accroissements finis

3. Lien entre le signe de la dérivée et les variations.