AN 7 - Intégrales dépendant d'un paramètre

Dans ce chapitre \mathbb{K} désigne \mathbb{R} ou \mathbb{C} ; I et J désignent des intervalles de \mathbb{R} non réduits à un point. On note $\overset{\circ}{J}$ l'intérieur de J (c'est-à-dire l'intervalle J privé de ses bornes).

Vocabulaire

On étudie dans ce chapitre les fonctions f de la forme $f(x) = \int_J g(x,t) dt$ où $x \in I$. x s'appelle le paramètre. C'est pourquoi on dit aussi que f est une intégrale dépendant d'un paramètre.

1 Continuité

Théorème 1 Théorème de continuité

Soit $g: I \times J \to \mathbb{K}$. On suppose que :

- $\forall x \in I$, la fonction $t \mapsto g(x,t)$ est continue sur J.
- $\forall t \in J$, la fonction $x \mapsto g(x,t)$ est continue sur I.

• Hypothèse de domination :

Il existe une fonction $\varphi: J \to \mathbb{R}$, positive et intégrable sur J telle que :

$$\forall (x,t) \in I \times J, |g(x,t)| \le \varphi(t)$$

Alors la fonction $f: x \mapsto \int_I g(x,t) dt$ est continue sur I.

Corollaire

Soit $g:I\times J\to \mathbb{K}$. On suppose que :

- $\forall x \in I$, la fonction $t \mapsto g(x,t)$ est continue sur $\overset{\circ}{J}$.
- $\forall t \in J$, la fonction $x \mapsto g(x,t)$ est continue sur I.

• Hypothèse de domination :

Pour tout segment [a,b] inclus dans I, il existe une fonction $\varphi_{a,b}: J \to \mathbb{R}$, positive et intégrable sur J telle que :

$$\forall (x,t) \in [a,b] \times J, |g(x,t)| \le \varphi_{a,b}(t)$$

Alors la fonction $f: x \mapsto \int_I g(x,t) dt$ est continue sur I.

Remarque 1

• Si J est un segment, et g est continue sur $I \times J$, alors les hypothèses sont acquises et f est continue sur I.

2 Dérivation

Théorème 2 Théorème de dérivation - Formule de Leibniz

Soit $g: I \times J \to \mathbb{K}$. On suppose que :

- $\forall x \in I$, la fonction $t \mapsto g(x,t)$ est intégrable sur J.
- $\forall t \in J$, la fonction $x \mapsto g(x,t)$ est de classe C^1 sur I.
- $\forall x \in I$, la fonction $t \mapsto \frac{\partial g}{\partial x}(x,t)$ est continue sur $\overset{\circ}{J}$

• Hypothèse de domination :

Il existe une fonction $\varphi: J \to \mathbb{R}$, positive et intégrable sur J telle que :

$$\forall (x,t) \in I \times J, |\frac{\partial g}{\partial x}(x,t)| \leq \varphi(t)$$

Alors la fonction $f: x \mapsto \int_I g(x,t) dt$ est de classe C^1 sur I, et $\forall x \in I$:

$$f'(x) = \int_{I} \frac{\partial g}{\partial x}(x, t) dt$$

Corollaire

Soit $g:I\times J\to \mathbb{K}.$ On suppose que :

- $\forall x \in I$, la fonction $t \mapsto g(x,t)$ est intégrable sur J.
- $\forall t \in J$, la fonction $x \mapsto g(x,t)$ est de classe C^1 sur I.
- $\forall x \in I$, la fonction $t \mapsto \frac{\partial g}{\partial x}(x,t)$ est continue sur \mathring{J}

• Hypothèse de domination :

Pour tout segment [a,b] inclus dans I, il existe une fonction $\varphi_{a,b}: J \to \mathbb{R}$, positive et intégrable sur J telle que :

$$\forall (x,t) \in [a,b] \times J, |\frac{\partial g}{\partial x}(x,t)| \le \varphi_{a,b}(t)$$

Alors la fonction $f: x \mapsto \int_{I} g(x,t) dt$ est de classe C^{1} sur I, et $\forall x \in I$:

$$f'(x) = \int_{J} \frac{\partial g}{\partial x}(x, t) dt$$

Remarque 2

• Si J est un segment, et g est de classe C^1 sur $I \times J$, alors les hypothèses sont acquises, et f est de classe C^1 sur I.