AL 6 - Matrices symétriques - Coniques

Dans le chapitre, $n \in \mathbb{N}^*$ et \mathbb{R}^n est muni de sa structure euclidienne canonique.

1 Matrices symétriques

Définition 1

 $M \in M_n(\mathbb{R})$ est dite symétrique si

$${}^tM = M$$

L'ensemble des matrices symétriques de $M_n(\mathbb{R})$ se note $S_n(\mathbb{R})$. $f \in \mathcal{L}(\mathbb{R}^n)$ est dit *symétrique* si la matrice qui lui est canoniquement associée est symétrique.

Proposition 1

L'ensemble $S_n(\mathbb{R})$ est un sous-espace vectoriel de $M_n(\mathbb{R})$ de dimension $\frac{n(n+1)}{2}$.

Proposition 2

 $f \in \mathcal{L}(\mathbb{R}^n)$ est symétrique si, et seulement si

$$\forall (x,y) \in (\mathbb{R}^n)^2, \quad (f(x)|y) = (x|f(y))$$

Proposition 3

Le polynôme caractéristique d'une matrice symétrique réelle est scindé sur \mathbb{R} .

Proposition 4

Les sous-espaces propres d'une matrice symétrique réelle sont deux à deux orthogonaux.

Théorème 1 Théorème spectral

Toute matrice symétrique réelle est diagonalisable en b.o.n., c'est-à-dire : si $S \in S_n(\mathbb{R})$, alors il existe $D \in M_n(\mathbb{R})$ diagonale, et $P \in O_n(\mathbb{R})$ (orthogonale) telles que

$$S = PDP^{-1} = PD^{t}P$$

2 Coniques

Dans ce paragraphe, on se place dans le plan \mathscr{P} , muni d'un repère orthonormé $\mathscr{R} = (O, \vec{\imath}, \vec{\jmath})$. On note \mathscr{P} l'espace vectoriel $\text{Vect}\{\vec{\imath}, \vec{\jmath}\}$.

Définition 2

On appelle conique tout ensemble $\mathscr C$ de points M de coordonnées (x,y) dans $\mathscr R$ dont les coordonnées vérifient une équation de la forme :

$$ax^2 + 2bxy + cy^2 + dx + ey + f = 0$$

avec $(a, b, c, d, e, f) \in \mathbb{R}^6$, et $(a, b, c) \neq (0, 0, 0)$.

Une telle équation est appelée équation de la conique \mathscr{C} .

- $ax^2 + 2bxy + cy^2$ est appelée partie quadratique de l'équation;
- dx + ey est appelée partie linéaire de l'équation.

Proposition 5

Soit \mathscr{C} une conique d'équation $ax^2 + 2bxy + cy^2 + dx + ey + f = 0$ dans le repère \mathscr{R} .

En notant $X = \begin{pmatrix} x \\ y \end{pmatrix} \in M_{2,1}(\mathbb{R})$, cette équation admet une écriture dite matricielle de la forme :

$${}^{t}XSX + LX + f = 0$$

où
$$S = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \in S_2(\mathbb{R})$$
 et $L = \begin{pmatrix} d & e \end{pmatrix} \in M_{1,2}(\mathbb{R})$.

Vocabulaire

- La matrice S est appelée matrice associée à la partie quadratique de l'équation de \mathscr{C} .
- La matrice L est appelée matrice associée à la partie linéaire de l'équation de \mathscr{C} .

Proposition 6 Elimination du terme rectangle

Soit \mathscr{C} une conique. Alors il existe une b.o.n. (\vec{u}, \vec{v}) de $\vec{\mathscr{P}}$ telle que l'équation de \mathscr{C} dans le repère $\mathcal{R}' = (O, \vec{u}, \vec{v})$ soit de la forme :

$$\lambda_1 x_1^2 + \lambda_2 y_1^2 + \delta x_1 + \varepsilon y_1 + \mu = 0$$

où (x_1,y_1) désignent les coordonnées dans \mathscr{R}' d'un point M de \mathscr{P} . De plus :

- λ_1 et λ_2 sont les valeurs propres de la matrice associée à la partie quadratique de l'équation de
- \vec{u} (resp. \vec{v}) est un vecteur propre unitaire associé à la valeur propre λ_1 (resp. λ_2).

Définition 3

Soit \mathscr{C} une conique d'équation $ax^2 + 2bxy + cy^2 + dx + ey + f = 0$ dans le repère \mathscr{R} .

On note S la matrice de la partie quadratique de cette équation, et λ_1, λ_2 les valeurs propres de S.

- ▶ Si $\lambda_1 \lambda_2 = 0$ (ce qui équivaut à $ac b^2 = 0$), on dit que \mathscr{C} est de genre parabole. ▶ Si $\lambda_1 \lambda_2 > 0$ (ce qui équivaut à $ac b^2 > 0$), on dit que \mathscr{C} est de genre ellipse;
- ▶ Si $\lambda_1\lambda_2 < 0$ (ce qui équivaut à $ac b^2 < 0$), on dit que \mathscr{C} est de genre hyperbole;

Avec les notations précédentes, on cherche encore à réduire l'équation de la conique \mathscr{C} , et à déterminer des caractéristiques géométriques :

▶ Si $\lambda_1 \lambda_2 = 0$ (par exemple $\lambda_2 = 0$):

Proposition 7 Changement d'origine

Il existe un point $O' \in \mathscr{P}$ tel que l'équation de \mathscr{C} dans le repère (O', \vec{u}, \vec{v}) soit de la forme :

$$x'^2 + qy' = k$$

où (x', y') désigne un couple de coordonnées de $M \in \mathscr{P}$ dans (O', \vec{u}, \vec{v}) , et $(q, k) \in \mathbb{R}^2$.

- \hookrightarrow Si q=0 et k<0, alors $\mathscr{C}=\varnothing$.
- \hookrightarrow Si q=0 et k>0, alors $\mathscr C$ est la réunion de deux droites parallèles, non confondues.
- \hookrightarrow Si q=k=0, alors $\mathscr C$ est une droite dirigée par $\vec v$.
- \hookrightarrow Si $q \neq 0$, alors \mathscr{C} est une parabole.

Dans ce cas, il existe un point $\Omega \in \mathscr{P}$ tel que l'équation de \mathscr{C} dans le repère $(\Omega, \vec{u}, \vec{v})$ soit de la forme :

$$X^2 = 2pY$$

où (X,Y) désigne un couple de coordonnées de $M \in \mathscr{P}$ dans $(\Omega, \vec{u}, \vec{v})$, et $p \in \mathbb{R}$ s'appelle paramètre de la parabole.

Définition 4

- Une telle équation est appelée équation réduite de la parabole de paramètre p.
- Ω est appelé sommet de la parabole.

$$ightharpoonup$$
 Si $\lambda_1 \lambda_2 \neq 0$

Proposition 8

La courbe \mathscr{C} admet un unique point de symétrie $\Omega \in \mathscr{P}$, appelé centre de la conique. Dans le repère $(\Omega, \vec{u}, \vec{v})$, \mathscr{C} admet une équation de la forme :

$$\lambda_1 X^2 + \lambda_2 Y^2 = k$$

où (X,Y) désigne un couple de coordonnées de $M \in \mathscr{P}$ dans $(\Omega, \vec{u}, \vec{v})$, et $k \in \mathbb{R}$.

Remarque 1

- On écrit l'équation de la conique \mathscr{C} sous la forme h(x,y)=0. Les coordonnées (x_0,y_0) dans \mathscr{R} du centre de symétrie de la conique sont données par : $\frac{\partial h}{\partial x}(x_0,y_0)=\frac{\partial h}{\partial y}(x_0,y_0)=0$.
- Avec les mêmes notations, $k = -h(x_0, y_0)$.
- \hookrightarrow Si $\lambda_1 \lambda_2 > 0$ et $\lambda_1 k < 0$, alors $\mathscr{C} = \varnothing$.
- \hookrightarrow Si $\lambda_1\lambda_2 > 0$ et k = 0, alors $\mathscr{C} = {\Omega}$.
- \hookrightarrow Si $\lambda_1\lambda_2 > 0$ et $\lambda_1k > 0$, alors $\mathscr C$ est une *ellipse*. Dans ce cas, l'équation de $\mathscr C$ dans le repère $(\Omega, \vec u, \vec v)$ s'écrit :

$$\frac{X^2}{\alpha^2} + \frac{Y^2}{\beta^2} = 1$$

où (X,Y) désigne un couple de coordonnées de $M \in \mathscr{P}$ dans $(\Omega, \vec{u}, \vec{v})$, et $(\alpha, \beta) \in (\mathbb{R}^*)^2$.

Définition 5

Une telle équation est appelée équation réduite de l'ellipse.

Les points $A(\alpha, 0), A'(-\alpha, 0), B(0, \beta), et B'(0, -\beta)$ (coordonnées dans le repère $(\Omega, \vec{u}, \vec{v})$) sont appelés sommets de l'ellipse.

Si $\alpha > \beta$ (resp. $\alpha < \beta$), alors (AA') (resp. (BB')) est appelé grand axe, et (BB') (resp. (AA')) est appelé petit axe de l'ellipse.

Remarque 2

- Si $\alpha = \beta$, on reconnait l'équation cartésienne d'un cercle.
- \hookrightarrow Si $\lambda_1\lambda_2<0$ et k=0, alors $\mathscr C$ est la réunion de deux droites sécantes.
- \hookrightarrow Si $\lambda_1\lambda_2 < 0$ et $k \neq 0$, alors $\mathscr E$ est une hyperbole.

Dans ce cas, l'équation de \mathscr{C} dans le repère $(\Omega, \vec{u}, \vec{v})$ s'écrit :

$$\frac{X^2}{\alpha^2} - \frac{Y^2}{\beta^2} = 1 \text{ } \textcircled{1} \qquad \text{ou} \qquad \frac{Y^2}{\beta^2} - \frac{X^2}{\alpha^2} = 1 \text{ } \textcircled{2}$$

où (X,Y) désigne un couple de coordonnées de $M \in \mathscr{P}$ dans $(\Omega, \vec{u}, \vec{v})$, et $(\alpha, \beta) \in (\mathbb{R}^*)^2$.

Définition 6

Une telle équation est appelée équation réduite de l'hyperbole.

Dans le cas ①, (resp. le cas ②) les points $A(\alpha,0)$ et $A'(-\alpha,0)$ (resp. $B(0,\beta)$, $etB'(0,-\beta)$) (coordonnées dans le repère (Ω,\vec{u},\vec{v})) sont appelés sommets de l'hyperbole.

${\bf Proposition}\, 9$

Les droites $\Delta: Y = \frac{\beta}{\alpha}X$ et $\Delta': Y = -\frac{\beta}{\alpha}X$ (dans le repère $(\Omega, \vec{u}, \vec{v})$) sont asymptotes à la courbe \mathscr{C} .

Proposition 10

Soient $\mathscr C$ une conique et S la matrice de la partie quadratique de son équation. Alors :

- $\bullet\,$ Si $\mathscr C$ est du genre parabole, alors elle admet un axe de symétrie dirigé par un vecteur propre de la valeur propre nulle de S.
- ullet Si $\mathscr C$ est du genre ellipse ou hyperbole (conique à centre), alors elle admet deux axes de symétrie orthogonaux, dirigés par deux vecteurs propres orthogonaux de S.