CHAPITRE

8

ÉTUDES DE FONCTIONS SPÉCIALES

Sommaire

1	I Théorème de l'application réciproque	2
2	2 Fonctions circulaires réciproques	3
	2.1 La fonction arc sinus	. 3
	2.2 La fonction arc cosinus	. 4
	2.3 La fonction arc tangente	. 5
3	B Les fonctions e^{it} et e^{at}	5
4	1 Dérivée et primitive d'une fonction à valeurs complexes	6

1 Théorème de l'application réciproque

Considérons une fonction f définie sur un intervalle I et à valeurs dans \mathbb{R} qui à un réel x de I associe un réel y. Nous voudrions savoir si nous pouvons définir une fonction « retour » qui permette, à partir de y, de revenir à x.

Définition 1.

Soient I et J deux intervalles de $\mathbb R$ et $f:I\to J$ une fonction.

On dit que f est bijective s'il existe une fonction $g:J\to I$ telle que pour tout $x\in I$ et pour tout $y\in J$:

$$g \circ f(x) = g(f(x)) = x$$
 et $f \circ g(y) = f(g(y)) = y$

Cette fonction g est appeée fonction réciproque de f et on notée f^{-1} .

Théorème 1.

Soient I et J deux intervalles de $\mathbb R$ et $f:I\to J$ une fonction continue strictement monotone. Alors :

- $\succ f$ est bijective de J dans I
- $> f^{-1}$ est continue strictement monotone de même sens de variation que f.

Remarque

Graphiquement, la courbe de la fonction réciproque f^{-1} d'une fonction f s'obtient en appliquant une symétrie d'axe la droite d'équation y = x.

C'est le cas, par exemple, pour les fonctions logarithme et exponentielle sur \mathbb{R} , où encore pour les fonctions carré et racine carrée sur $[0; +\infty[$.

Théorème 2.

Soit f une application continue et strictement monotone de l'intervalle I sur l'intervalle J=f(I), dérivable en $a\in I$. La fonction f^{-1} est dérivable en b=f(a) si et seulement si $f'(a)\neq 0$ et on a alors :

$$(f^{-1})'(b) = \frac{1}{f'(a)}$$

Corollaire 1

Soit f une fonction dérivable et strictement monotone de l'intervalle I sur l'intervalle J=f(I) et si f' ne s'annule pas sur I, alors la fonction f^{-1} est dérivable sur J et :

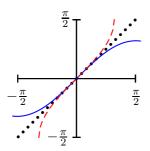
$$(f^{-1})'(x) = \frac{1}{f' \circ f^{-1}(x)}$$

2 Fonctions circulaires réciproques

2.1 La fonction arc sinus

Définition 2.

La fonction sinus est continue et strictement croissante sur l'intervalle $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$. Elle admet donc sur cet intervalle une fonction réciproque définie sur [-1; 1]. Cette fonction est appelée **arc sinus** et notée arcsin ou parfois sin⁻¹.



 $y = \arcsin x$ signifie que y est le réel (l'arc) compris entre $-\frac{\pi}{2}$ et $-\frac{\pi}{2}$ dont le sinus vaut x.

Exemple

$$\arcsin\left(\frac{1}{2}\right) = \frac{\pi}{6} \quad \operatorname{car} \quad \sin(\frac{\pi}{6}) = \frac{1}{2}$$

Propriété 1.

La fonction arc sinus est dérivable sur]1;1[et on a :

$$\forall x \in]-1;1[\quad \arcsin' x = \frac{1}{\sqrt{1-x^2}}$$

Démonstration.

Pour tout x de [-1;1], on a $\sin(\arcsin(x)) = x$

La fonction dérivée de la fonction sinus est la fonction cosinus. Or celle-ci s'annule en $-\frac{\pi}{2}$ et $\frac{\pi}{2}$ dans l'intervalle $[-\frac{\pi}{2}; \frac{\pi}{2}]$, pour appliquer le théorème de l'application réciproque, nous excluons ces valeurs et donc leurs images -1 et 1 par la fonction sinus . En dérivant les deux membres de l'égalité on obtient :

$$\sin'(\arcsin(x)) \times \arcsin'(x) = \cos(\arcsin(x)) \times \arcsin(x) = 1 \text{ pour } x \in]-1;1[$$
La fonction cosinus ne s'annule pas sur $]-\frac{\pi}{2};\frac{\pi}{2}[\text{ donc } \arcsin'(x) = \frac{1}{\cos(\arcsin(x))}$
Or $\cos(\arcsin(x)) = \sqrt{1-\sin^2(\arcsin(x))} = \sqrt{1-x^2}$

Finalement
$$\arcsin(x) = \frac{1}{\sqrt{1-x^2}}$$

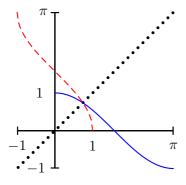
2.2 La fonction arc cosinus

Définition 3.

La fonction cosinus est continue et strictement décroissante sur l'intervalle $[0;\pi].$

Elle admet donc sur cet intervalle une fonction réciproque définie sur [-1;1].

Cette fonction est appelée arc cosinus et notée arccos ou parfois \cos^{-1} .



 $y = \arccos x$ signifie que y est le réel (l'arc) compris entre 0 et π dont le cosinus vaut x.

Propriété 2.

La fonction arc cosinus est dérivable sur] -1;1[et on a :

$$\forall x \in]-1;1[\quad \arccos' x = \frac{-1}{\sqrt{1-x^2}}$$

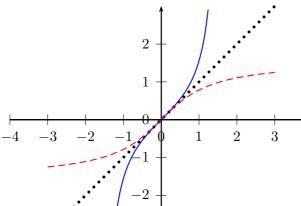
2.3 La fonction arc tangente

Définition 4.

La fonction tangente est continue et strictement croissante sur l'intervalle] $-\frac{\pi}{2}; \frac{\pi}{2}$ [.

Elle admet donc sur cet intervalle une fonction réciproque définie sur \mathbb{R} .

Cette fonction est appelée **arc tangente** et notée arctan ou parfois tan⁻¹.



 $y=\arctan x$ signifie que y est le réel (l'arc) compris entre $-\frac{\pi}{2}$ et $\frac{\pi}{2}$ dont la tangente vaut x.

 $\forall x \in \mathbb{R}$ $\arctan' x = \frac{1}{1+x^2}$

Propriété 3.

La fonction arc tangente est dérivable sur $]-\infty;+\infty[$ et on a :

$$\forall x \in \mathbb{R} \quad \arctan' x = \frac{1}{1+x^2}$$

3 Les fonctions e^{it} et e^{at}

Définition 5.

Pour tout nombre réel θ et tout nombre complexe $a=\alpha+i\beta,$ on pose :

$$ightharpoonup e^{it} = \cos(t) + i\sin(t)$$

$$ightharpoonup e^{at} = e^{\alpha t} (\cos(\beta t) + i\sin(\beta t))$$

Démonstration.

$$e^{at} = e^{(\alpha + i\beta)t} = e^{\alpha t}e^{i\beta t} = e^{\alpha t}(\cos(\beta t) + i\sin(\beta t))$$

Remarque

On peut retrouver ainsi les formules de Moivre et d'Euler, pour tout $\theta \in \mathbb{R}$ et $n \in \mathbb{N}$:

$$(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$$

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 ; $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

4 Dérivée et primitive d'une fonction à valeurs complexes

Définition 6.

Une fonction d'une variable réelle à valeur complexe est une fonction qui à un nombre réel associe un nombre complexe.

Exemple

La fonction définie sur \mathbb{R} par $f(x) = 2x - 3x^2i$ est à valeur complexe.

Remarque

On peut considérer que la fonction f est constituée de deux « sous » fonctions :

$$f_1(x) = 2x \ et \ f_2(x) = -3x^2.$$

On a ainsi $f(x) = f_1(x) + i f_2(x)$.

Propriété 4.

Soit $f(x) = f_1(x) + i f_2(x)$ une fonction continue d'une variable réelle à valeur complexe.

- lacktriangle Si f_1 et f_2 sont dérivables, alors f est dérivable et $f'(x) = f'_1(x) + if'_2(x)$
- ♦ Si F_1 et F_2 sont les primitives de f_1 et f_2 alors F est intégrable et $F(x) = F_1(x) + iF_2(x)$

Exemple

Soit la fonction définie sur \mathbb{R} par $f(x) = 2x - 3x^2i$.

- → f'(x) = 2 6ix
- → $F(x) = x^2 ix^3$