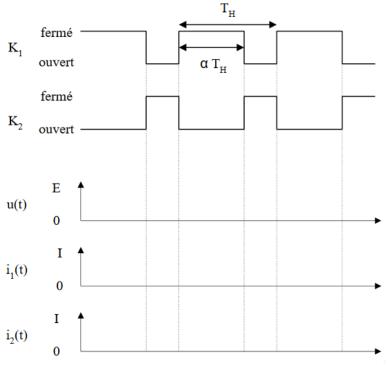

TD n°12 Hacheur


Exercice 1

Hacheur parallèle

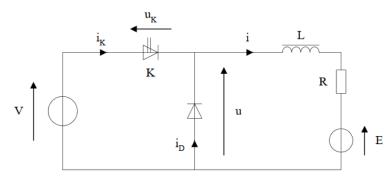
Dans le montage ci-dessous, les deux interrupteurs électroniques sont supposés parfaits.

1. On donne les séquences de conduction de K_1 et K_2 . Compléter les chronogrammes :

1

2. Donner la relation entre < u >, α et E.

Exercice 2

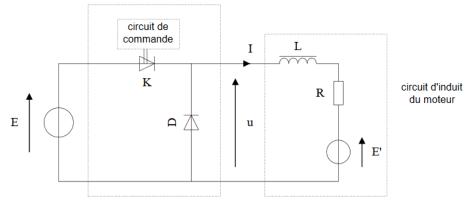

Un moteur à courant continu travaillant à couple constant est inclus dans le montage ci-contre :

Le hacheur fonctionne à une fréquence f = 500 Hz.

L'interrupteur K est fermé lorsque $0 \le t \le \alpha T$ et ouvert entre αT et T.

La diode est supposée parfaite. L'inductance de la bobine de lissage L est de valeur suffisante pour que le courant dans le moteur soit considéré comme constant : i = I = cte.

La résistance de l'induit du moteur est : $R = 1 \Omega$.



BTS ATI / A2

- 1. Représenter les allures de u et u_K en fonction du temps.
- 2. Exprimer la valeur moyenne de u en fonction de V et α .
- 3. Représenter les allures de i_K et i_D en fonction du temps.
- 4. Exprimer les valeurs moyennes des courants i_K et i_D en fonction de I et α .
- 5. Déterminer l'intensité I du courant dans le moteur en fonction de V, E, R et α.
- 6. Application numérique : Calculer < u >, I et $< i_D >$ pour V = 220 V, E = 145 V et $\alpha = 0.7$.
- 7. Établir la relation liant la vitesse n du moteur (en tr/min) à α pour E = 0.153 n, sachant que R = 1 Ω , V = 220 V et I = 9 A.
- 8. Tracer n en fonction de α .

Exercice 3

On alimente un moteur à courant continu dont le schéma équivalent est donné ci-dessous, à l'aide d'un hacheur. L'interrupteur électronique K et la diode sont supposés parfaits.

La période de hachage est T, le rapport cyclique α . L'inductance L du bobinage de l'induit du moteur a une valeur suffisante pour que la forme du courant dans l'induit soit pratiquement continue. Le hacheur est alimenté par une tension continue E = 220 V.

La f.c.é.m. E' du moteur est liée à sa vitesse de rotation n par la relation :

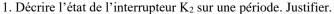
E' = 0.20 n avec E' en V et n en tr/min. L'induit a pour résistance R = 2.0 Ω.

- 1. Etude de la tension u pour $\alpha = 0.80$.
- 1.1 Représenter, en la justifiant, l'allure de la tension u.

On prendra comme instant origine celui où l'interrupteur K se ferme.

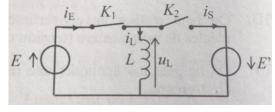
- 1.2 Déterminer l'expression littérale de la valeur moyenne < u > de la tension u, en fonction de E et du rapport cyclique α . Calculer sa valeur numérique.
- 2. Fonctionnement du moteur pour $\alpha = 0.80$.

Le moteur fonctionne en charge, la valeur moyenne du courant d'induit est < I > = 10 A.


Déterminer E' et en déduire n.

3. Le dispositif de commande du hacheur est tel que le rapport cyclique α est proportionnel à une tension de commande u_c : $\alpha=100$ % pour $u_C=5$ V.

Tracer la caractéristique < u > en fonction de u_{C} .


Exercice 4

On considère le hacheur suivant alimenté par une source de tension et dont la charge est aussi une source de tension. La bobine et les deux interrupteurs sont considérés comme parfaits. K_1 est fermé sur $[0; \alpha T]$ et ouvert sur $[\alpha T; T]$.

- 2. En régime permanent, déterminer les variations de $i_L(t)$. On introduira une valeur maximale I_{max} et une valeur minimale I_{min} .
- 3. Comme tous les composants sont idéaux, il y a conservation de la puissance : la puissance moyenne fournie par le générateur est égale à celle reçue par la charge. En déduire les valeurs possibles de α pour que le hacheur joue bien le rôle d'élévateur de tension.

2

BTS ATI / A2

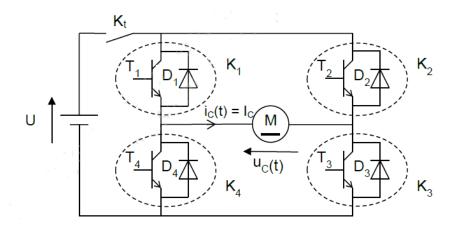
Exercice 5

Commande d'un moteur de portail par un hacheur

Le moteur est commandé par un pont de puissance dit en H fonctionnant en hacheur. Ceci permet de faire tourner le moteur dans un sens ou dans l'autre, à la vitesse désirée.

La tension d'alimentation du hacheur, fournie par une batterie, est notée U.

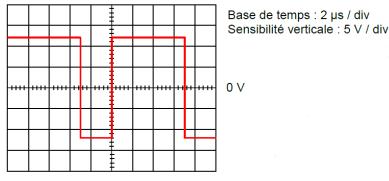
Les diodes D_1 , D_2 , D_3 et D_4 sont supposées parfaites.


Les transistors T_1 , T_2 , T_3 et T_4 fonctionnent en commutation : ils sont soit bloqués (interrupteurs ouverts) soit saturés (interrupteurs fermés).

La charge du hacheur est constituée de l'induit du moteur à courant continu.

Le courant d'intensité ic est considéré comme constant : $i_C = I_C = 3,5$ A.

On note $u_C(t)$ la tension aux bornes du moteur et $\langle u_C \rangle$ sa valeur moyenne.


On désigne par α le rapport cyclique du hacheur.

- 1. Expliquer l'intérêt d'alimenter l'induit du moteur par l'intermédiaire d'un hacheur.
- 2. Indiquer dans le tableau ci-dessous les composants passants.

t (µs)	de 0 à αT	de αT à T
Interrupteurs commandés	K ₁ et K ₃	K ₂ et K ₄
Composants	1	
passants		

La Figure ci-dessous représente l'oscillogramme de la tension $u_C(t)$ aux bornes du moteur.

Oscillogramme de $u_C(t)$

- 3. Déterminer la valeur de la tension U fournie par la batterie.
- 4. Déterminer la période T de fonctionnement du hacheur. En déduire la fréquence f de fonctionnement.
- 5. Déterminer la valeur du rapport cyclique α .

On considère que la vitesse n est positive lorsque le portail s'ouvre et négative lorsqu'il se ferme.

- 6. Montrer que $\langle u_C \rangle = (2\alpha 1) \times U$. Calculer $\langle u_C \rangle$.
- La f.é.m. E est proportionnelle à la vitesse de rotation n du moteur : $E = 6.82 \cdot 10^{-3} \times n$ avec n en $tr \cdot min^{-1}$ et E = 2.35 V.
- 7. Calculer la vitesse de rotation n du moteur.

BTS ATI / A2